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On learning that I was to receive the Allan Award for
1996, I had mixed feelings of elation, dismay, and sur-
prise. Elation, because receiving the Allan Award is an
honor bestowed on so few; dismay, because I realized
that it would mean I would have to face this audience
with something interesting to say; and surprise, because
the decision to give me the award must have been made
shortly after Kevin Davis, the editor of Nature Genetics,
published the following statement regarding a letter I
had just coauthored: “We disagree with this approach
for three reasons. It is intellectually wrong. . . . It is
historically inconsistent. . . . It is technically antedilu-
vian” (Lander and Kruglyak 1996, p. 358).

The letter I had coauthored concerned the “genetic
dissection of complex traits,” a subject that has in recent
years received a surge of interest. I felt certain that the
Awards Committee would want me to give an address
on a topic of current interest, and what could be of more
current interest in the area I am known to work in? And
why would my views on this topic be of any interest if
they are intellectually wrong, historically inconsistent,
and technically antediluvian? So what should 1 talk
about?

My mind went back ~20 years to University Day at
the University of North Carolina at Chapel Hill. The
guest speaker was the comedian Andy Griffith, an alum-
nus of the University. After being introduced, he walked
up to the podium and looked around at the audience
all in full academic regalia. He then quickly told three
or four jokes. “There,” he said, “tha’s what ah do for
a living.” Well, figure 1 illustrates what I, an animal-
breeder-turned-biostatistician, do for a living. Figure 1a
illustrates the main results of the Elston-Stewart algo-
rithm, while figure 1b shows the Haseman-Elston
method. There must be many persons in the audience
for whom this is Greek; and I suspect there are even
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some who would find it more comprehensible if it were
Greek. My friend and one-time colleague Mary K. Pelias
calls it, perhaps appropriately, “chicken scratches.”

I have entitled my talk today “Algorithms and Infer-
ences” because I want to show how, when summary
statistics are calculated from a set of observations, the
conclusions that are drawn depend on both the algo-
rithms used to calculate them and the rules of inference
that one believes are appropriate. This is especially true
in the case of the genetic dissection of multifactorial
diseases, for which we now have very powerful tools,
including sophisticated computer programs. Whereas a
sharp scalpel in the hands of a skillful surgeon can be
used for healing, the same scalpel in the hands of an
unskilled person can cause harm. Similarly, whereas the
powerful computer programs currently available can, in
the hands of a skillful genetic analyst, be used to advance
our genetic knowledge, the same programs in the hands
of an unskilled person can cause harm by leading to
invalid conclusions. I shall first briefly review how some
of the algorithms work and then give an overview of
some principles of inference. Finally, I shall discuss prob-
lems that arise in the search for individual genes underly-
ing complex diseases. I shall confine myself to the subject
of linkage analysis, i.e., the search for familial cosegrega-
tion of genes underlying disease with genetic markers.
Suppose a person receives from one parent a chromo-
some bearing a D allele at a disease locus and an M
allele at a marker locus but, from the other parent, the
alleles d and m; then figure 2 summarizes what may
result when such a person forms gametes to be passed
on to the next generation. Each gamete may be a nonre-
combinant or a recombinant. The proportion of gametes
that are expected to be recombinants is the recombina-
tion fraction, a parameter that is a measure of the genetic
distance between two loci and is usually denoted 0. If 6
< .5 there is linkage between the two loci; whereas if 6
= .5 there is no linkage.

Algorithms

Computer algorithms are used to calculate statistics.
It is common to think of the term ““algorithm” as refer-
ring only to the method by which a particular result,
in our case a statistic, is calculated. More important,
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Figure 1 Statistical basis underlying two methods of linkage
analysis. a, Elston-Stewart algorithm (Elston and Stewart 1971). b,
Haseman-Elston regression method (Haseman and Elston 1972).

however, is just what is being calculated, and I use the
term to refer to that also. We are often interested in
estimating the recombination fraction 8 from a set of
families segregating for a disease, with each family mem-
ber being typed at a marker locus. If we know the recom-
bination fraction, as well as the mode of inheritance of
the disease and marker, we can calculate the probability
of any particular data outcome. This is expressed as
a probability function, P(data|recombination fraction).
For example, to take a simple situation, suppose we
have a mating in which there are 7 offspring, and, after
typing all the offspring, it is possible to unequivocally
score each as a recombinant or not. If we let r be the
number of recombinants, then this probability function
is P(r|0) = (})0’(1 — 0)"". Substitutingr =0, 1,2, ...,
or # into this expression gives us the appropriate proba-
bility for any value of r. Here we consider 0 to be a
known fixed value, and the value of the function de-
pends on the variable 7, the number of recombinants
that will be observed.

Once we have typed the offspring, we know the out-
come 7, so this is now no longer a variable. Sir Ronald
Fisher, one-time Balfour Professor of Genetics at Cam-
bridge University, defined the likelibood function of a
parameter 0 for a particular set of data 7, L(recombina-
tion fraction | data) to be mathematically the same as the
probability function, but now we consider 7 to be fixed,
and the different values that the function can take on
depend on the different possible values of the unknown
parameter 8. Thus the two expressions are the same, the
only difference being that the likelihood L is considered
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as a function of the recombination fraction 0, while the
probability P is considered as a function of the data
outcome 7. (It so happens that it is only the relative
magnitudes of the likelihood L(8|7) that are of interest,
so that the strict definition is one of proportionality
instead of one of equality: L(0|r) « P(r|8).) The relative
magnitudes of the likelihood for different possible values
of 0 can be used to choose among them, and the maxi-
mum-likelihood estimate of 0 is that value of 6 that
maximizes the likelihood, i.e., the value that makes it
most probable for our sample data to have occurred.
Fisher showed that maximum-likelihood estimates have
desirable properties in large samples. It is therefore of
interest to calculate likelihoods for large pedigrees,
which can be very informative for the linkage analysis
of a rare monogenic disease.

The purpose of the Elston-Stewart algorithm was to
calculate the likelihood for a large pedigree under a
broad class of genetic models, one of which involved
linkage between a marker and any monogenic trait,
whether a discrete disease trait or a continuous quantita-
tive trait. The algorithm caused concern initially, be-
cause the calculations start at the bottom of the pedigree
instead of following the flow of genes down through the
pedigree (Ott 1985, p. 33). However, it so happens that
the proposed algorithm is very efficient in terms of com-
puting time. The principle that brings about this effi-
ciency can be seen in a simple example. Figure 1 shows
that the Elston-Stewart algorithm involves summations
(Z) and products (IT). Now the order in which these
operations are performed can affect how much comput-
ing time is required. For example, the calculation
(2X3)+(2X4)+(2XS) = 24 requires three multiplica-
tions and two additions, but changing the sequence of
operations to 2X(3+4+35) = 24 requires only one multi-
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plication and two additions. Although the savings in this
simple example are small, multiple applications of the
same principle can make the difference between a single
likelihood calculation taking <1 s, versus =1 h. The
Elston-Stewart algorithm ensures that the time to com-
pute a likelihood increases only linearly, rather than
exponentially, with the number of persons in the pedi-
gree. On the other hand, the time required increases
exponentially as the number of loci increases, so that
the method soon becomes infeasible if we try to analyze
a disease and multiple marker loci simultaneously, i.e.,
multipoint linkage analysis. For this purpose Lander and
Green (1987) proposed an alternative algorithm whose
computation time increases linearly with the number
of loci but exponentially with the number of pedigree
members.

In both these algorithms many multiplications of
probabilities are performed. Now, when two events are
independent, their joint probability is obtained by multi-
plying together their individual probabilities. Con-
versely, if the joint probability is the product of the
individual probabilities, then the events are independent.
The fact that in pedigree likelihoods we find many prob-
abilities being multiplied together implies that many as-
sumptions are being made about certain things being
independent. It is these very assumptions (in addition to
the specific sequence in which the additions and multipli-
cations are performed) that make the likelihood compu-
tations feasible, and they need to be carefully scruti-
nized. Both the Elston-Stewart and Lander-Green
algorithms have been substantially improved since they
were first proposed. It is important to differentiate those
improvements that are computational in nature, such as
the sequence in which operations are performed, from
those that become possible by making restrictive as-
sumptions that may not always hold.

The approach to linkage analysis proposed by Hase-
man and Elston (1972) had a different purpose. Whereas
the Elston-Stewart approach was intended specifically
for the analysis of well-defined monogenic traits, albeit
of multifactorial etiology because of environmental in-
fluences, the Haseman-Elston approach was put forward
as a method to detect linkage for traits of ill-defined
etiology, such as psychological traits and mental dis-
eases. It is easiest to understand the principle underlying
it in the case of a continuous trait, but the method can
be used for any quantitative trait, including a disease
trait which can be quantified, e.g., by letting 0 = absence
of disease and 1 = presence of disease. (In fact, the first
published application of the method was to a disease
trait [Elston et al. 1973].) Consider a sample of sib pairs
who have been typed for a polymorphic marker and on
whom a trait has been measured. At any marker locus,
the sib pairs must share zero, one, or two alleles identical
by descent (IBD) (i.e., direct copies of the same parental
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Figure 3 Haseman-Elston (1972) method. a, Plot of data points
illustrating the regression shown in b: (sib-pair trait difference)* = Y,
linkage corresponds to .5 < ¥ < 1, in fig. 1b. b, Illustration of
extremely discordant and extremely concordant pairs being the most
powerful to detect linkage.

allele), and, if there is linkage to a locus underlying the
trait of interest, they will correspondingly tend to share
zero, one, or two alleles IBD at that trait locus. The
result is that, if we plot the squared sib-pair trait differ-
ence against the proportion of alleles shared IBD at the
marker locus, the points will show the trend of a line
with a negative slope, as illustrated in figure 3a4. Sibs
who are alike in the trait will tend to be alike at a linked
marker, and sibs who differ in the trait will tend to differ
at a linked marker. If there is no linkage, such a trend
will be absent. In many instances it may not be possible
to determine exactly the proportion of marker alleles
shared (which must be 0, .5, or 1), but, with a knowledge
of the marker-allele frequencies, this may be estimated
as a weighted average, e.g., of 0 and .5 or of .5 and 1,
as can be seen in figure 3a. We can fit a line to the data
points by “least squares,” i.e., by minimizing the average
squared distance of the points to the line, and so deter-
mine if the slope is negative. Large-sample theory can
be used to determine whether a negative slope is likely
to reflect the true situation in the population sampled
or is a chance occurrence that would disappear if more
sib pairs were studied. I call this method “model free,”
in that it does not model the mode of inheritance of the
trait being studied and its validity does not depend on
any such assumptions, as opposed to a “model-based”
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analysis that models a particular mode of inheritance.
The method has also been called a “robust” or “non-
parametric” method, but the former term can describe
a model-based analysis performed using the Elston-
Stewart algorithm, and model-free methods can be pa-
rameterized in terms of the proportion of marker alleles
shared IBD, lending them amenable to likelihood analy-
sis (Risch 1990). Although it has been stated that these
model-free methods assume a genetic model for the trait
being studied (Blangero 1993; Whittemore 1996), this
is not the case: their validity does not depend on any
such assumptions. This so-called sib-pair method has
been extended in many ways, and in particular we can
ask if the proportion of alleles shared IBD is significantly
different from .5. It can be seen in figure 3b that the
most powerful samples of sib pairs to detect departure
from this null hypothesis are ones in which the sib pairs
are either extremely discordant or extremely concor-
dant, those around the middle of the line being of little
use (Risch and Zhang 1996).

Inferences

Statistical significance is another concept due to
Fisher. If we wish to judge to what extent a set of data
supports the hypothesis of linkage, we can ask how
probable, if in fact the hypothesis of no linkage (the
null hypothesis) is true, is it for the data—or any other
outcome even more suggestive of linkage—to have oc-
curred. If this probability is small, then we have what
Fisher called a “logical disjunction” —either the null hy-
pothesis is not true (we do have linkage), or we have
observed a rare event. The rarity of such an event, called
“the P value” or “‘empirical significance level,” is a mea-
sure of how unlikely the data are if there is no linkage.
Thus, the smaller the P value, the more we are inclined
to believe that there is linkage. Performing a significance
test is the same as determining a P value, and we say
the result is significant at the P level. But it must be
realized that the calculation of a P value involves many
more assumptions than just the absence of linkage; a
probability model is assumed, and it is significant depar-
ture from the totality of this model that is being evalu-
ated.

It is, to my mind, unfortunate that emphasis is some-
times placed more on hypothesis testing than on signifi-
cance testing. In hypothesis testing, rather than reporting
a quantitative measure that reflects how unlikely the
data are if there is no linkage, we set up a strict algorithm
that tells us whether to declare that linkage has been
found or not, with the understanding that, if, in fact,
there is no linkage (more correctly, if the null hypothesis
is true), the probability that we should declare linkage
is limited to some small level o, the probability of what
is called the “type I error.” Of course, one also makes
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Table 1

Classification of Linkage Tests by Whether Linkage Is Present and
Whether Linkage Is Declared

TRUE STATE OF NATURE

DECLARE No Linkage Linkage Total

No linkage a b a+b

Linkage c d c+d
Total a+c b+d n

an error if one declares there is no linkage when, in fact,
there is linkage. In a well-designed study, the probability
of this type Il error, denoted B, is also controlled. Unfor-
tunately, this cannot be done with any precision when
studying complex diseases (reviewers of grant applica-
tions, please note!), because the probability of type II
error can only be calculated if one specifies, in addition
to what is needed to control type I error, unknown de-
tails about the mode of inheritance of the disease one is
studying.

Hypothesis testing, with its rigorous algorithm for
coming to a clear-cut answer—the null hypothesis is
declared either true or false—has great utility for those
situations in which a decision must be made, such as in
business situations and in medical practice. It is beloved
by editors and reviewers, because it makes their lives
easy. | once had a reviewer tell me that it was wrong to
report a result as being significant at the 6% level be-
cause that was not significant! But hypothesis testing is
unscientific. In science we have the luxury of not needing
to make snap decisions. It is recognized that theories—
and even laws—may at any time fall by the wayside.
Mendel’s second law, which in essence said that linkage
does not exist, is one example that all geneticists should
remember. Even significance testing, which at least tries
to quantify our uncertainty, has its limitations. What is
of scientific interest is not so much the probability of
making a mistake when the null bypothesis is true as
the probability of making a mistake when declaring that
the null hypotbesis is false. If we consider a large number
of tests for linkage classified by whether or not there is
in fact linkage and whether or not linkage is declared,
the numbers in the fourfold table being a4, b, ¢ and d
(table 1), the usual probability that is controlled is the
probability of type I error when there is no linkage,
cl(a + c): of greater interest is the posterior probability
of type I error when linkage is declared on the basis of
a test, c/(c + d). More generally, we should really like
to know, at the end of study, the probability that we
have found a linkage, as pointed out by Cedric Smith
(1959) >3$ years ago.

Consider a large population of conceivable linkage
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Figure 4 Derivation of the posterior probability of linkage as-
suming the simple dichotomy “linkage” vs. “no linkage.” See text for
details.

tests in which the probability of there actually being
linkage is P(/) and the probability of there not being
linkage is P(I) = 1 — P(l), as illustrated in figure 4a.
We observe a set of data d and can calculate the proba-
bility of such an observation (i) given that there is link-
age and (ii) given that there is no linkage: these are the
vertical distances indicated in figure 4b. The left hatched
rectangle in figure 4b represents the joint probability of
linkage and our data, while the right hatched rectangle
represents the joint probability of no linkage and our
data. Given our data, these two hatched areas are the
only areas that are relevant, so that the probability of
linkage, given our data, is as shown in figure 4¢, which is
an example of Bayes’s theorem. Recall now that linkage
corresponds to any value of 6 < .5 and that the probabil-
ity of our data depends on 8. A more accurate represen-
tation is therefore that given in figure 54, with the re-
sulting probability of linkage being as indicated in figure
5b. All this assumes that we know, before we start our
study, the prior probability distribution of 6; i.e., we
need to know in what proportion of all our conceivable
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linkage tests there will in fact be linkage, and, if there is,
what are the corresponding probabilities of the various
possible values of the recombination fraction .

I mentioned earlier that it is only the relative magni-
tudes of likelihoods that are of interest. Suppose we
are interested in two particular hypotheses—say, two
values of the parameter 8: 6 = 0’ and 6 = .5. For this
situation, George Barnard (1949) defined the term “lod”
to be the logarithm of the “odds” of 6 = 6’ versus 0
= .5. However, he differentiated forward odds from
backward odds. The odds of one event versus another
is defined to be the probability of the first event divided
by the probability of the second. If we think of linkage
as an event of interest after we have gathered a set of
data, then the lod is the logarithm of the forward odds
for 6’ versus .5, which is what we would like to know
in order to choose between the two values of 6. But,
without knowledge of the prior distribution of 6, only
the backward lod can be calculated (fig. 6). What is
meant by lod in linkage analysis is this backward lod,
the logarithm of the ratio of two likelihoods, which is
quite a different thing. One still occasionally sees in the
linkage literature a (backward) lod interpreted as the
logarithm of the odds for linkage, but this is incorrect
unless one specifies that the backward odds is being
referred to.

(b)

P(Ld) =

Figure 5 Derivation of the posterior probability of linkage tak-
ing account of the fact that linkage corresponds to a recombination
fraction (6) between 0 and .5.
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Logarithm of the forward odds
P(6 =6'ld)
€ P0=05d)

log of the odds for 6 =9’
versus 6 = 0.5

Logarithm of the backward odds
Pde=0) . L(©=6d)
P(dl6 =05) L(6 =05d)

log of the likelihood ratio for 6 = 6’
versus 0 = 0.5

= log

Figure 6 Distinction between the logarithm of forward odds
and the logarithm of backward odds. See text for details.

Newton Morton (1955), the first recipient of the Allan
Award, introduced lods into linkage analysis. He pro-
posed taking logarithms to base 10, so that a lod of 1,
2, or 3 would correspond, respectively, to a value of 6
being 10, 100, or 1,000 times as “likely” as no linkage—
i.e., the observed data being 10, 100, or 1,000 times as
probable, given that value of 0 rather than 6 = .5. He
considered the problem of detecting linkage between a
marker and a well-defined monogenic disease, on the
assumption that the disease locus has equal probability
of being located anywhere on the genetic map. With this
prior uniform distribution, he was able to come up with
an approximate posterior probability of making an error
when declaring linkage. He recommended that, to keep
this probability down to ~5%, linkage should only be
declared significant when a lod of 3 is reached. It can
be shown that this always corresponds to a P value of
<1073 and that, for large samples, it corresponds to a
P value of ~107%,

Gustave Malécot (1947), using linkage analysis as an
example, showed that choosing a single cut point for the
probability of type I error, in order to choose whether or
not to believe the null hypothesis, is irrational. Much as
though all scientists want to be objective, he pointed out
that scientific knowledge must be subjective. Whatever
experimental result is found, any rational scientific inter-
pretation must necessarily depend on the prior beliefs
of the interpreter. This principle must apply with even
greater force in the study of complex diseases, to which
I now turn.

Complex Diseases

For the purposes of genetic analysis, we can take as
an operational definition of a complex disease any dis-
ease for which we have no reasonable basis for determin-
ing the prior probability of linkage, because we do not
know with certainty how many—or even if—genes are
involved in its etiology. It is therefore impossible to
apply Bayes’s theorem to arrive at a posterior probabil-
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ity of linkage. Furthermore, we either have to use a
model-free method of analysis, or, if we use a model-
based method of analysis, we need to consider the ap-
propriateness of the assumptions we are making. The
best way to determine the critical assumptions is by
examining the particular likelihood function being used.
Typical assumptions are that (a) segregation at a single
locus is the sole cause of familial aggregation of the
trait being studied, (b) all relationships among family
members are known without error, (c) there is no pleio-
tropic effect of the marker locus on the trait (whether
epistatic or not), (d) the only unknown parameters are
recombination fractions, and (e) (if any founder marker
genotypes are unknown) the marker genotype frequen-
cies are known without error. It is noteworthy that,
whereas individually these assumptions may not be nec-
essary to obtain a valid P value, jointly they can be
critical. Thus, when a small P value is calculated, it may
be one of these assumptions that is being evaluated, in
addition to absence of linkage. For this reason the link-
age analysis of a complex trait is fraught with difficulty.

Some have argued that the best way to unravel the
genetic etiology of a complex disease is by studying can-
didate genes, guessing what biochemical pathways are
involved. Others have argued that we should perform a
global search of the whole genome, using roughly
equally spaced markers as a dragnet to search for the
approximate location of genes, by linkage. Which is bet-
ter depends on many factors, not least among them be-
ing the prior probability that one’s guesses regarding
candidate genes are correct. I believe that both ap-
proaches will be necessary for some time to come. Either
way, many markers will be tested, either biochemical
markers that may be functionally related to the disease
or nonfunctional genetic markers that are indicators of
gene location. Statisticians have long studied the “multi-
ple comparisons” problem of interpreting P values when
many tests are performed. If we say that the result of a
test is significant when the P value is less than, say, .05,
then we can increase our chances of finding a significant
result, even if the null hypothesis is true, by increasing
the number of tests performed. Just by chance alone,
the smallest of 1,000 P values will be smaller than the
smallest of 100 P values.

Because we now have so many markers available for
scanning the whole genome by linkage analysis, we need
to allow for this when interpreting the smallest P values
from such a scan. In a thoughtful article, Lander and
Kruglyak (1995) discussed this problem in some detail.
Among other things, they proposed that all P values
found in linkage analysis should be adjusted to allow
for the large number of tests in a dense scan of the whole
genome, whether or not such a large number of tests
was actually performed, with the result that a LOD of
=3.3 would be required before declaring linkage sig-
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Table 2

Comparison of Hypothetical Results from Two Different Sib-Pair
Studies Looking at a Complex Genetic Trait

Study No. of Pairs P Value* Importance®
A 200 1.99 X 107° Significant linkage
B 100 2.01 x 10~° Suggestive linkage

* For linkage.
b Based on the Lander and Kruglyak (1996) classification scheme.

nificant. In a letter that applauded their efforts, Witte,
Elston, and Schork (Witte et al. 1996) pointed out that
this particular proposal does not have a sound statistical
basis. We also pointed out that blanket use of the cut
points they proposed, without any thought being given
to other aspects of the particular study, could have un-
fortunate consequences. For example, table 2 shows
what could be the results of two sib-pair linkage studies.
With virtually identical P values, the first would be clas-
sified as “significant linkage” under their proposed
scheme, while the second would be classified as ‘“‘sugges-
tive linkage.” Furthermore, the second study could well
be the more important result, because it is based on a
smaller sample size! We suggested that authors of link-
age studies should report precise P values (not adjusting
them for multiple comparisons that were never made),
so that they can be properly interpreted by the reader.

This letter provoked a rejoinder, giving the three rea-
sons why our suggestion was wrong (Lander and Krug-
lyak 1996, p. 358):

1. “It is intellectually wrong, in that it implies that
investigators who happen to encounter chance fluc-
tuations early in a project should accord them
greater weight than those who find exactly the same
evidence late in a project.” Is it intellectually wrong
to interpret the smallest of 1,000 P values differ-
ently from the smallest of 100 P values?

2. “It is historically inconsistent, in that it flies in the
face of longstanding practice in human genetics of
using the lod threshold of 3, which is premised on
a whole-genome significance level.” Was the lod
threshold of 3 premised on a whole-genome signifi-
cance level, or was it premised on the low prior
probability of linkage to a single randomly placed
marker, which can be calculated for a monogenic
disease? If it is argued that this is the same thing,
is it historically consistent to change the lod thresh-
old of 3 to one of =3.3, depending on the type of
study?

3. “Finally, it is technically antediluvian, in that it ig-
nores the fact that technology has progressed to the
point where a whole-genome scan is fast becoming
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the quantum of publication.” Do we want to deny
anyone who has not completed a whole-genome
scan the opportunity of publishing any results?

I leave it to you to decide what is the best approach to
reporting results of analyzing complex diseases, though I
have little doubt that editors will have the final word.
In the past when I have been involved in correspondence
to the editor of a scientific journal, it has been the norm
for the editor to circulate each letter to all those con-
cerned, to be sure that, prior to publication, all authors
agree as to the facts; for then, discussion and differences
of opinion will lead to more light than heat. The editor
of Nature Genetics does not subscribe to this policy.

On a more humorous note, I should point out that
our original letter tried to highlight what was perhaps
meant by a proposal made by Lander and Kruglyak that
“more informal vehicles” should publish less “signifi-
cant” findings. The table included an additional column,
headed “Acceptable Journal.” For study A, we had en-
tered Nature and for study B we had entered Nature
Genetics. This drew the following response from Laura
Goodman, the assistant editor of Nature Genetics: “Al-
though we understand the point you are trying to make
with this table, we do not wish to present what may be
inaccurate representations in terms of what manuscripts
are or are not appropriate for publication in both Nature
and Nature Genetics. Simply removing the column ‘Ac-
ceptable Journal’ should still allow you to make the
main point that, by having arbitrary cutoffs for the P
values, minor differences in P values can constitute ma-
jor differences in the manner in which this data is viewed
with regard to its relative importance.” (Letter to J. S.
Witte). We understood that our example was perhaps
inaccurate and perhaps even a little demeaning, so, in
our revised version of the letter, we changed the last
column to make it more palatable to Nature Genetics.
We entered Nature Genetics for study A and National
Engquirer for study B. As can be seen in table 2, the table
was published without the last column—and without
further comment.

In conclusion, I wish to thank all those, far too numer-
ous to name individually, who have helped me one way
or another to arrive at where [ am today: family, friends,
students, staff, colleagues, and teachers.
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